Difference between revisions of "General Information/IS Distribution"
Line 11: | Line 11: | ||
For a more detailed visualization, please go to I[https://tncentral.ncc.unesp.br/ISbrowser/script_php/graphic_display.php?ac_number=NC_002754 Sbrowser Graphical Display of ''S. solfataricus'' P2 genome]. |alt=]]</center> | For a more detailed visualization, please go to I[https://tncentral.ncc.unesp.br/ISbrowser/script_php/graphic_display.php?ac_number=NC_002754 Sbrowser Graphical Display of ''S. solfataricus'' P2 genome]. |alt=]]</center> | ||
==Bibliography== | ==Bibliography== | ||
− | < | + | {{Reflist|32em}} |
+ | <br /> | ||
+ | <hr> | ||
+ | {{TnPedia}} |
Revision as of 11:34, 21 March 2022
ISs are widespread (Fig.6.1) and can occur in very high numbers in prokaryotic genomes. A recent study concluded that proteins annotated as Tpases, or as proteins with related functions, are by far the most abundant functional class in both the prokaryotic and eukaryotic genomic and metagenomic public databases[1] (Fig.2.5).
Since the last surveys (e.g. [2][3]) many new ISs have been identified largely as a result of the massive increase in available sequenced prokaryotic genomes. Careful analysis of a number of these has also revealed that some genomes contain significant levels of truncated and partial ISs devoid of Tpase genes. These genomic "scars" represent traces of numerous ancestral transposition events. However, genome annotations are often based simply on the presence of Tpase genes (e.g. [4]) and do not include the entire DNA sequence with the IS ends. Indeed, a significant number of solo IS-related Inverted Repeats (IRs) have been identified in various genomes. Small IS fragments are rarely taken into account even though they can provide important insights into the evolutionary history of the host genome (Fig.6.2), (Fig.6.3) and (Fig.6.4). Not only can this seriously impair studies attempting to provide an overview of the evolutionary influence of TEs on bacterial and archeal genomes, but such fragments may encode truncated proteins and these could influence gene regulation (e.g. [5][6][7]). In bacteria [8][9][10][11] and eukaryotes[12][13] truncated transposases have been shown to inhibit transposition. One example where annotation of IS fragments has provided important information is in the obligatory intracellular insect endosymbiont, Wolbachia, which also carries high numbers of full-length ISs. The sequence divergence observed suggests that several waves of IS invasion and elimination have occurred over evolutionary time [14].
Bibliography
- ↑ Aziz RK, Breitbart M, Edwards RA . Transposases are the most abundant, most ubiquitous genes in nature. - Nucleic Acids Res: 2010 Jul, 38(13);4207-17 [PubMed:20215432] [DOI]
- ↑ Chandler M, Mahillon J. Insertion Sequences Revisited. In: Craig NL, Lambowitz AM, Craigie R, Gellert M, editors. Mobile DNA II. American Society of Microbiology; 2002. p. 305–366.
- ↑ Mahillon J, Chandler M . Insertion sequences. - Microbiol Mol Biol Rev: 1998 Sep, 62(3);725-74 [PubMed:9729608] [DOI]
- ↑
- ↑ Cordaux R, Udit S, Batzer MA, Feschotte C . Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. - Proc Natl Acad Sci U S A: 2006 May 23, 103(21);8101-6 [PubMed:16672366] [DOI]
- ↑
- ↑
- ↑ Stalder R, Caspers P, Olasz F, Arber W . The N-terminal domain of the insertion sequence 30 transposase interacts specifically with the terminal inverted repeats of the element. - J Biol Chem: 1990 Mar 5, 265(7);3757-62 [PubMed:2154486]
- ↑
- ↑ Gueguen E, Rousseau P, Duval-Valentin G, Chandler M . Truncated forms of IS911 transposase downregulate transposition. - Mol Microbiol: 2006 Nov, 62(4);1102-16 [PubMed:17078817] [DOI]
- ↑
- ↑ Rio DC . Regulation of Drosophila P element transposition. - Trends Genet: 1991 Sep, 7(9);282-7 [PubMed:1662417] [DOI]
- ↑
- ↑